In cyber security, we commonly talk about different product categories like intrusion detection systems (IDS), but how often do we actually look at real-life intrusion detection system examples? This blog post hopes to make this a reality by taking a look at an example and application of one of the best IDS solutions out there, Suricata. First, let’s review.
An intrusion detection system (IDS) is a cybersecurity tool that analyzes system activity or network traffic for patterns that might indicate an attack. These patterns could be:
By identifying these patterns, IDS helps security personnel identify potential threats and take necessary steps to mitigate those threats. There are two main types of intrusion detection systems:
When an IDS detects suspicious activity, it will typically send an alert to a security administrator. The security administrator can then investigate the alert and take appropriate action, such as blocking the attacker's IP address or shutting down a compromised device.
Intrusion detection systems are an important part of a layered security defense. They can help to identify and respond to attacks that other security measures, such as firewalls, may miss. However, it's important to note that IDS systems are not foolproof and can sometimes generate false alarms or cause alert fatigue.
There are two main categories for Intrusion Detection Systems (IDS) based on their deployment and data source:
1. Network Intrusion Detection System (NIDS): NIDS act as network monitoring devices deployed at strategic points within a computer network. Their primary function is to continuously capture and analyze network traffic data traversing a specific network segment. NIDS can be implemented in two primary ways:
NIDS typically utilizes network adapter promiscuous mode. This mode allows the NIDS to capture all network traffic on the attached network segment, regardless of its intended recipient. NIDS employs two main techniques for analyzing captured network traffic data: signature-based detection and anomaly-based detection.
2. Host-Based Intrusion Detection System (HIDS): In contrast to NIDS which focuses on network traffic analysis, HIDS provides security for individual devices (hosts) within the network. HIDS function as software agents deployed directly on the operating system of the host device itself. Their primary function is to monitor and analyze activity occurring on the host device. HIDS are deployed as software agents on individual servers, desktops, or laptops within the network. A single HIDS agent is typically installed on each host device for dedicated monitoring.
HIDS collect data from various sources on the host device, including:
HIDS primarily utilizes anomaly-based detection techniques. By analyzing the collected data, HIDS establishes baselines for typical host activity. Significant deviations from these baselines, such as unusual file access attempts or unexpected processes running, can indicate potential intrusions or suspicious behavior.
The three types of intrusion detection systems in cyber security based on detection methods are: Anomaly-based, Signature-based, and Hybrid. These methods define how the IDS analyzes data to identify potential intrusions.
Each of these three detection methods (Anomaly-based, Signature-based, Hybrid) offers different strengths and weaknesses. Choosing the most suitable approach depends on factors like the specific security requirements of the network, the resource availability for managing the IDS, and the acceptable level of false positives.
The best example of an intrusion detection system is Suricata.
Suricata is a free, open-source IDS/IPS cybersecurity tool that acts as both an Intrusion Detection System (IDS) and an Intrusion Prevention System (IPS). It is used by organizations all around the world to detect cyber threats and monitor networks for suspicious activity.
Suricata’s strength lies in its versatility. When tuned correctly, it is a high-performance tool that can handle large volumes of network traffic and generate vast amounts of network traffic data. It is also extremely flexible, offering deep analysis of various protocols and the ability to customize rule sets to fit your organization’s specific needs. Because it’s an open-source IDS/IPS, Suricata benefits from a large, active community that constantly develops and refines its capabilities.
Put simply, Suricata is a powerful and adaptable tool that provides a robust layer of defense for any organization’s network security strategy.
It has five primary applications:
You need a network security platform that doesn’t generate an endless stream of useless alerts across part of your network, and instead automatically identifies alerts of interest and notifies you of only serious and imminent threats. Your organization deserves response-ready detection with visibility into your entire network regardless of the environment with easy access to all the contextual evidence you need to stop an attack before it can cause damage. Replace your legacy IDS with a modern network detection and response platform that gives you these features and more.
The Stamus Security Platform™ is a network-based threat detection and response solution that eliminates the challenges of legacy IDS while lowering your response time. Stamus Security Platform harnesses the full potential of your network, bringing state-of-the-art threat detection, automated event triage, and unparalleled visibility to the security team.
Book a demo to see if the Stamus Security Platform is right for your organization.
To learn more about replacing your legacy IDS, check out the following resources:
To be notified of new blog posts and other news, make sure to subscribe to the Stamus Networks blog, follow us on Twitter, LinkedIn, and Facebook, or join our Discord.