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Suricata
Suricata is a free, open source, mature, fast and robust network threat detection engine. The Suricata 
engine is capable of real time intrusion detection (IDS), inline intrusion prevention (IPS), network security 
monitoring (NSM) and offline pcap processing.  Suricata inspects the network traffic using a powerful and 
extensive rules and signature language and has powerful Lua scripting support for detection of complex 
threats.

Suricata’s fast paced, community driven, development focuses on security, usability and efficiency.  The 
Suricata project and code is owned and supported by the Open Information Security Foundation (OISF), a 
non-profit foundation committed to ensuring Suricata’s development and sustained success as an open 
source project.

Stamus Networks
Stamus Networks helps enterprise security teams know more, respond sooner and mitigate their risk with 
insights gathered from cloud and on-premise network activity. The Stamus Network Detection (Stamus ND) 
and Stamus Network Detection and Response (NDR) are commercial enterprise-scale solutions developed 
and supported by Stamus Networks. Stamus ND/NDR are advanced network detection and response 
systems that expose serious and imminent threats to critical assets and empower rapid response. 

Stamus ND is a Suricata-based intrusion detection (IDS) and network security monitoring (NSM) system, 
that delivers:
• Correlated IDS (signature-based) and NSM (protocol transaction logs) data
• Open interfaces for SIEM
• Turn-key Splunk app
• Support for third-party signatures and threat intelligence
• Tagging & classification for automated triage and alert reduction
• Integrated guided threat hunting

Stamus NDR is a broad-spectrum, open network detection and response (NDR) system built on top of 
Stamus ND that adds:
• Declarations of Compromise™ - response-ready threat detection from machine learning, stateful logic, 

and signatures
• Asset-oriented attack insights with kill chain timeline
• Open interfaces for SOAR, SIEM, XDR, IR
• Includes Stamus threat intelligence and custom threat detection
• Explainable and transparent results with evidence

CONTEXT
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INTRODUCTION to eBPF and XDP

eBPF stands for extended Berkeley Packet Filter but you probably already knew that.  The old 
BPF system is used to filter packets on raw sockets and it has been extended to increase its area 
of usage. It is indeed now possible to plug an eBPF filter in various places of the Linux kernel to 
extract information or act on kernel behavior (See Brendan Gregg's page for more information). 
eBPF renders this possible by adding multiple kernel and userspace exchange methods. The 
main one is called maps. A map is a data structure shared between the kernel and the userspace. 
Both the kernel and userspace can access the map making this a powerful way to exchange 
information. Another capability of the eBPF filter is action. Depending on where it is run, it can tell 
the kernel to accept a system call or data transfer.

As you can guess, if the kernel can act based on eBPF filter content, it means it can be 
programmed in some way. eBPF is in fact a pseudo machine with a custom set of instructions. As 
it is not convenient to develop in machine language, a subset of C can be used and the Clang 
compiler (and soon gcc) has a special mode that can be used to generate eBPF bytecode from C 
code. In terms of code, the kernel passes various data as a parameter (depending on the hook) to 
a function and the function implements the wanted algorithm using, and updating maps if needed, 
and returns a decision.

eBPF and XDP support was added to Suricata 4.1 thanks to work by your servitor (Eric Leblond) 
and contributions from Jesper Dangaard Brouer (RedHat Principal Engineer).  This work has been 
completed for Suricata 5.0 with the addition of some powerful features.

There are 3 ways eBPF can be used in Suricata. In all of them, the eBPF filter can access the 
packet data and parse them to extract information. The first way is eBPF load balancing. The 
eBPF filter contains a load balancing function that will be used to dispatch a packet coming on an 
interface between all the sockets listening on that interface (fanout). The second way is eBPF 
filtering. Instead of using a traditional Berkeley Packet Filter, the kernel will use an eBPF filter 
instead. This offers an interesting perspective as maps can be used to introduce dynamic 
components into the filtering. We will detail that later. The third usage is XDP for eXtreme Data 
Path. In XDP, a eBPF filter is attached to a network interface and it is run against all received 
datagrams. The main point here is that it is done before the regular networking that will not be 
reached if the eBPF filter asks for a drop.

In Suricata, the main use case is currently to implement a bypass on a Linux raw socket but some 
other meaningful use cases can also be implemented.

http://www.brendangregg.com/ebpf.html
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PACKET FILTERING and eBP

eBPF socket filtering
In this case, the eBPF filter is attached to the raw socket and is deciding what packets need to be 
dropped or accepted. The flexibility of eBPF is one of the key points. Programmatic access to the 
packet data allows any single pass analysis to be done. Things that were impossible with 
traditional BPF can be done easily via eBPF with some C code. One example provided in Suricata 
is filtering following a list of VLANs; that was impossible via BPF.

eBPF filtering really shines by leveraging maps. A typical map is a hash table that contains a set 
of keys and values. Length in bytes of the keys and values have to be unique in a map and is 
defined at declaration.  This is really flexible and allows arbitrary keys and values to be used. 
Maps can be updated from the eBPF code making it possible to build persistence in the 
implemented algorithm.  Additionally, the userspace can also dynamically update the maps, 
making it possible to completely change the behavior of the filter.  One example, with Suricata, is 
a filter that blocks all traffic coming from IPv4 addresses stored in the maps.  By using a Linux 
kernel feature, named pinned maps, it is possible to access the map content via an external tool.  
It is thus possible to manage the list of IP address to drop via an external tool like bpfctrl 
developed and made public by Stamus Networks.

This is just an example, some more interesting features can be implemented, such as maintaining 
a list of services to monitor (IPv4:protocol:port). This could be used to monitor a farm of 
containers on a subset of the provided services.

XDP filtering
With XDP filtering, we enter a different dimension. The eBPF code runs in various places 
depending on the configuration. If software is just an emulation, the performance advantages 
come from driver and hardware modes. In the case of driver mode, the filtering is done inside the 
driver code before the Linux networking stack. An early drop is thus really performant.  In the case 
of hardware, the eBPF code is run inside the network card. This is currently only supported by a 
few cards including Netronome.

All the techniques described in the previous section are still valid, the only real change is the 
efficiency with which packets are dropped.  Primary this process is done before any heavy 
treatments are performed on the packet.  Suricata 5.0 supports almost all XDP features including 
hardware mode. 

https://github.com/StamusNetworks/bpfctrl
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SURICATA FLOW BYPASS with eBPF and XDP
Motivations and concept
Let's start this subject with something pretty self-evident, Suricata is CPU intensive. Tasks such as 
analyzing data on 30,000 different signatures is a highly consuming task despite traditional 
optimization methods.  So, in most cases, the bottleneck is the CPU computation. By 
consequence, one core is only able to handle a limited bandwidth, traditional numbers are around 
250mbps to 500mbps per core.  Furthermore, as part of its work, Suricata is reconstructing flow 
as seen by the hosts. This has an implication with respect to threading. A packet treatment thread 
must handle all the packets of a single flow to avoid out of order packets that would cause the 
reconstruction to be invalid. If you combine the two elements, you come to the conclusion that 
Suricata cannot properly handle a flow that is faster than the cores supported bandwidth (between 
250mbps and 500mbps). We named these flows, elephant flows.  On top of that, the elephant 
flows are also breaking other flows because it causes overflow in various ring buffers linked to 
packet acquisition.

To limit the impact of elephant flows, Eric Leblond and the Stamus Networks team, implemented a 
flow bypass (See Stamus Networks blog post announcing the feature).  The concept is to speed 
up the process for packets locally from bypassed flows or to collaborate with the capture method 
to bypass certain packets.

In the case of Linux raw socket, eBPF maps are the technology that can be used to maintain a 
table containing the flows to be bypassed.  As filtering can be done on a socket (via eBPF filter) or 
on the interface via XDP, there are two different mechanisms even if they share some part of the 
implementation such as maps management.

Bypass strategy
Suricata comes with a set of bypass trigger methods. One consists of bypassing as soon as the 
stream reassembly depth has been reached (which means when Suricata is stopping full 
inspection of a stream).  The second method is bypassing encrypted packets.  Suricata parses 
the beginning of the TLS session doing a handshake analysis, once the session switches to 
encrypted it triggers a bypass.

eBPF and XDP are greatly extending the capabilities of packet filtering but it requires a certain 
degree of C coding skills.  Hopefully some use cases will be directly implemented in Suricata 
source code to enable some of the benefits from this technology without having to invest time and 
effort into C coding.

https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/
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One other method is based on the `bypass` keyword.  A rule can be written to trigger a bypass 
when it matches allowing greater flexibility, for instance, only bypassing for certain websites or for 
services such as a backup service or Netflix.  In the later case, it is possible to use Suricata traffic 
ID ruleset to bypass all flows coming from a service like Netflix.

eBPF bypass
Initial implementation of eBPF bypass was done via socket filtering that occurred after the network 
stack handles the packet.  There isn’t much to be said about this method. It works but it is not 
optimal as the filtering is done in a late step as shown on the following figure:

Figure 1. eBPF bypass in Suricata

The kernel has already done a complete treatment of the packet creating internal data 
structure.  This single step is costly at high rate and can even be a bottleneck.  Thus 
performance could be improved by doing the filtering at an earlier stage of packet ingestion 
inside the kernel.
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XDP bypass
This is what is done via XDP bypass as shown on the following figure:

If socket mode is not interesting, the driver and moreover the hardware bypass are really 
interesting.   Driver mode is supported for all network cards with XDP support (this includes Intel, 
Mellanox, Netronome). The only cards supporting the bypass code in hardware mode are 
Netronome cards.  Getting it to work requires a custom eBPF filter but it can be obtained via the 
code provided in Suricata 5.0 and beyond via the define settings in eBPF source code.

Figure 2. XDP bypass in Suricata
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XDP bypass and IPS mode
Suricata can create a software bridge between two interfaces.

Figure 3. Suricata IPS mode in AF_PACKET

Figure 4. Suricata IPS mode with XDP Bypass

This method is performant and often used to provide high speed IPS capabilities. As dropping a 
packet in IPS mode has much more impact than in IDS mode, getting the help of the bypass 
technology seems really tempting but there is a problem. Suricata is doing the copy from one 
interface to another so as eBPF is dropping the packet this will not work.

XDP supports a special decision to send a packet to another interface.  By updating the eBPF 
code to forward instead of dropping, we manage to have bypass in XDP mode.  What is even 
more interesting is that we get super high-speed forwarding that bypasses the kernel and realize, 
in fact, a direct transfer from one network card to another card.
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One of the problems of Suricata in AF_PACKET IPS mode is that without running Suricata the 
bridge is not active anymore and traffic is blocked. Thus, stopping or even restarting Suricata will 
result in a service interruption. To fix this issue, a global switch in the XDP filter can be activated 
via a pinned map.  When the value in the map is not zero, the XDP filter transfers all packets from 
card to card.  When the value is 0, the packets are sent to Suricata if they are not part of a 
bypassed flow. A tool like bpfctrl can be used to change the value in the global switch map 
allowing a watchdog process to limit the impact of a failing Suricata.

ADVANCED XDP USAGES in SURICATA

Pinned maps and XDP bypass
When Suricata starts, it only sniffs the end of the flows already in progress. This means there are 
a bunch of incomplete flows that will not be fully understood by Suricata. This is something we 
want to avoid as this will cause some unnecessary work by Suricata. If we look at that problem 
from a bypass perspective, we clearly see that it would be useful for Suricata to have bypassed 
flows surviving a Suricata restart. This is in fact possible with XDP because the XDP filter is 
attached to the interface and does not disappear with Suricata process exit.  The only problem is 
that we will end up with ghost flows if Suricata does not have a way to restore the flow table. It is 
currently done in Suricata 5.0 by using pinned maps and by dumping the flow tables at start to 
reconstruct the internal state inside Suricata.  Doing so, Suricata manages to keep the flow table 
upon restart and avoid getting really confused at start.

Content bypass 
One of the bypass methods relies on bypassing a TLS session as soon as it switches to 
encrypted mode. This allows Suricata to analyze the TLS handshake properties and to avoid 
seeing encrypted packets where not much can be done.  Furthermore, thanks to the counters 
available in the flow table, Suricata is not losing the accounting of the bypassed TLS sessions. 
This is quite convenient and at least for long flows, really efficient.

Efficiency is really lower for short TLS flows because they mostly fit into the socket ring buffer.  A 
partial fix consists of programming a basic TLS parser in the eBPF code to detect encrypted 
messages and drop them in XDP.  This allows early drop and releases pressure on the ring buffer.  
This method needs to be used with care as it offers a way to bypass by using a traffic pattern.  
Limiting that to a list of trusted servers may be a nice idea.

https://github.com/StamusNetworks/bpfctrl
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CPU redirect
Network cards can do flow load 
balancing based on a hash method.  
This mechanism is known as 
Receive Side Scaling (RSS) and is 
used to distribute the packets on 
different queues thus splitting the 
workload in multiple units.  The 
issue here is that the flow load 
balancing designed in the network 
card is not properly structured for 
Suricata.  This methodology uses 
asymmetric load balancing whereas 
Suricata requires symmetric load 
balancing to get all the packets of a 
single flow handled within a single 
thread.  The result is that "NIC 
default" RSS load balancing cannot 
be used on most cards.

Figure 5. Problem of asymmetric hashing

By getting only one queue this means one single CPU will do the whole kernel work on the 
incoming packet. This will be a problem.

Jesper Dangaard Brouer came up with a solution for this problem by introducing a new feature in 
XDP named CPU redirect.  By using this feature the eBPF code can distribute the raw datagram 
to selected CPUs that will handle the kernel tasks.  Consequently, the CPU that receives the 
packet from the NIC is not the bottleneck anymore as it is now only dispatching the work to other 
cores.
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Netronome RSS load balancing
The Netronome card allows RSS load balancing to be programmatically done in the eBPF code. 
This is used in Suricata to realize an IP pair load balancing.  The advantage of this load balancing 
is that it is fragmentation resistant as even IP fragmented packets will have the same hash. This 
avoids the issue seen with IP port load balancing where fragments do not have the same hash. 
The efficiency of the load balancing may be lower than the one with port but at least we don't end 
up with packets on wrong threads.
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Tunnel decapsulation
This feature is also related to load balancing. In some cases, the network is using tunnel like GRE 
or similar to transport traffic from a set of flows. This results in elephant flows that cannot be 
properly load balanced by Suricata.  XDP offers the capacity to shift the start of a packet. By 
doing that we manage to strip out the tunnel part in XDP and directly send to the kernel the inner 
packets.  The result is that load balancing is done on the inner flows and the elephant flow is not 
seen anymore.  This technique is currently implemented for the GRE protocol via a dedicated 
XDP filter, but other protocols could be implemented too.

eBPF and XDP are a way to fix some problems associated with high performance. It is not the 
magical answer to every performance issue, and it requires some work.  It is, however, a key 
component to redesign the way traffic capture is built.  This area is evolving fast and the next big 
step will be the new AF_XDP capture method that provides a fast and efficient capture method. It 
is currently lacking some important features for Suricata capture but they should be added soon to 
the Linux kernel and this new capture method should be available in a coming release of Suricata.

Technical details and configuration information can be found in the eBPF and XDP page of the 
official Suricata documentation.

eBPF and XDP features present in Suricata 5.0 introduce interesting possibilities in terms of 
dynamic behavior and they will help Suricata to behave more correctly when under stress.  A lot of 
use cases are yet to reveal themselves; we hope this document will give you some ideas.

Don't hesitate to contact us at contact@stamus-networks.com if you wish for more information 
about the subject or want to discover Stamus Networks products.

CONCLUSION

https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
mailto:contact@stamus-networks.com?subject=Info%20on%20eBPF%20and%20XDP%20in%20Suricata
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Stamus Networks believes that cyber defense is bigger than any single person, platform, 
company, or technology. That’s why we leverage the power of community to deliver the next 
generation of open and transparent network defense. Trusted by security teams at the 
world’s most targeted organizations, our flagship offering – Clear NDR™ – empowers cyber 
defenders to uncover and stop serious threats and unauthorized network activity before 
they harm their organizations. Clear NDR helps defenders see more clearly and act more 
confidently through detection they can trust with results they can explain.
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